SPECIFICATION

For
\section*{SWITCHING POWER SUPPLY}

M/N: MPE-K256(-C)

Revision History		
Version	Revise Date	Change Items
Rev. 01	Oct. 10. 2012	Established.
Rev. 02	Jan. 11. 2013	Updated.
Rev. 03	Mar. 62013	Updated the performance.
Rev. 04	Apr. 29. 2013	Added input voltage derating specification.
Rev. 05	May. 272013	Revised the condition of turn-on delay; Updated the mechanical drawing.
Rev. 06	Oct. 3. 2014	Add optional cover drawing and derating curve.
Rev. 07	Jan. 3. 2018	1. Changed form. 2. Added EN 55032.
Rev. 08	Jul. 2. 2018	Changed mechanical diagram.

Total Output Power: Max. 250W convection cooled at $50^{\circ} \mathrm{C}$ environment temperature. Max. 250 W with 11.7 CFM at $70^{\circ} \mathrm{C}$ environment temperature. ${ }^{\text {(Note 1) }}$

1. Air flow from the top to the body of PSU with distance 50 mm maximum, and also see the performance curves.
2. To stabilizing the fan supply, the unit needs min. load 10 W on main output.
3. Model no. coding:

MPE-K 25 - - Y - Z

(2)

$Z=$	Cover kit
blank	Open frame
C	With cover kit

Characteristic	Minimum	Typical	Maximum	Units	Notes \& Conditions
Input Voltage	85	115 / 230	264	VAC	Continuous input range.
	125		373	VDC	
Label Voltage	100		240		
Input Frequency	47	$50 / 60$	63	Hz	AC input.
Input Current			3.5	A	Nominal AC Input Voltage (115VAC/230VAC), rated load.
Inrush Current			$30 / 60$	A	Nominal AC Input Voltage (115VAC/230VAC), one cycle at $25^{\circ} \mathrm{C}$.
No-load power consumption			$0.3 / 0.5$	W	Nominal AC Input Voltage (115/230VAC), without fan connected. Only with model MPE-K256
Power Factor	0.9				
Input Protection	One non-user serviceable internally located AC input line fuse. Fuse : 5A / 250VAC * 1pcs				

Characteristic	Minimum	Typical	Maximum	Units	Notes \& Conditions
Output Voltage		48		VDC	
		12(Fan)			
Initial Set Accuracy	47.6		48.4	\%	Initial setting accuracy is at Input 115VAC and output at 60% rated load.
Minimum Load		0		A	
Start Up Delay		1	1.5	Sec	At input 115VAC, 100% rated load, $25^{\circ} \mathrm{C}$.(Note 1)
Hold Up Time	20			mS	Nominal AC Input Voltage (115VAC), rated load.
Line Regulation		± 1.0		\%	Less than $\pm 1 \%$ at rated load with $\pm 10 \%$ changing in input voltage 115VAC.
Load Regulation		± 1.0		\%	Measured from 60\% to 100\% rated load and from 60% to 20% rated load ($60 \% \pm 40 \%$ rated load).
Ripple \& Noise		480		mV	Rated load, measured by a 20 MHz bandwidth limited oscilloscope and the each output is connected with a 10 FF Electrolytic Capacitor and a $0.1 \mu \mathrm{~F}$ Ceramic Capacitor.
Leakage Current			1	mA	At input $264 \mathrm{VAC}, 63 \mathrm{~Hz}$, rated load.
Overvoltage Protection	For some reason the power supply fails to control itself, the build-in over voltage protection circuit will auto recovery the outputs to prevent damaging external circuits, the trigger point is around $110 \% \sim 135 \%$ of output voltage.				
Short Circuit Protection	Fully protected against output overload and short circuit. Automatic recovery upon of overload condition.				
Remote Voltage Sense	Compensates for wire voltage drop.				
PG signal	When power is turned on, the power good signal will go high 100 ms to 500 ms after all output DC voltages are within regulation limits.				
PG signal	The power fail signal will go low at least 1 ms before the output voltages fall below the regulation limits.				

Note:

1. Defined at AC input voltage only.

General						
Characteristic Minimum Typical Maximum Units						
Efficiency		88	89	90	$\%$	At input 230VAC, rated load, above 0.5 hr. warm up.
Average Efficiency						

Characteristic	Minimum	Typical	Maximum	Units	Notes \& Conditions
Operating Temperature	-20		+70	${ }^{\circ} \mathrm{C}$	Derate linearly above $50^{\circ} \mathrm{C}$ by 1.5% per ${ }^{\circ} \mathrm{C}$ to a maximum temperature of $70^{\circ} \mathrm{C}$ at 50% load.
Storage Temperature	-40		+85	${ }^{\circ} \mathrm{C}$	
Relative Humidity	5		95	\%RH	Non-condensing.
Cooling	11.7			CFM	Forced-cooled when > 250W
Operating / Non-Operating Altitude		3000 / 4000		m	

Performance of MPE-K256

Phenomenon	Standard	Class	Notes \& Conditions
Conducted	EN 55022 / EN 55032 CISPR 22 \& FCC Part 15	B	
Radiated	EN 55022 / EN 55032 CISPR 22 \& FCC Part 15	B	
Harmonic	EN 61000-3-2	D	
Voltage Flicker	EN 61000-3-3		

Phenomenon	Standard	Criteria	Notes \& Conditions
ESD	IEC 61000-4-2	A	$\pm 8 \mathrm{KV}$ air discharge, $\pm 6 \mathrm{KV}$ contact discharge
Radiated	IEC 61000-4-3	A	10V/m
EFT	IEC 61000-4-4	A	$\pm 2 \mathrm{KV}$ Line \& PE
Surges	IEC 61000-4-5	A	L-N: $\pm 1 \mathrm{KV}$, L/N-PE: $\pm 2 \mathrm{KV}$
Conducted	IEC 61000-4-6	A	10V
Power Magnetic	IEC 61000-4-8	A	10A/m
Dips and Interruptions	IEC 61000-4-11	$\begin{gathered} A \\ A \\ A / B \\ C \end{gathered}$	DIP: >95\%, 0.5 cycle DIP: 30%, 25 cycles DIP: $60 \%, 5$ cycles (Note 2) INT: >95\%, 250 cycles

Note:

1. Above specification is applied with output equal or below 250 W . For higher output power, please re-confirm with us.
2. The test result of input $240 \mathrm{Vac} / 100 \mathrm{Vac}$ is criteria A / B.
3. As a build-in type power supply, the power supply needs to be installed in a suitable enclosure to pass the EMI/EMC tests. The final assembly has to comply with the valid EMI/EMC and safety.

Safety Approvals

Safety Agency	Safety Standard	Notes \& Conditions
TUV	EN 60950-1, $2^{\text {nd }}$ edition	CE declaration.
CB	IEC 60950-1, $2^{\text {nd }}$ edition	Approved.
UL/cUL	UL 60950-1, 2nd Edition, CSA C22.2 No. 60950-1-07, 2nd Edition	Approved.

Mechanical Details

M/N: MPE-K256

Unit: mm
SIZE : $152.4(\mathrm{~L}) \times 101.6(\mathrm{~W}) \times 41.0(\mathrm{H}) \mathrm{mm}$, Tolerance $+/-0.4 \mathrm{~mm}$.

Note: Air cooling if necessary, please see performance curves

POWER SUPPLIES

Parameter	C	/Desc				
Dimension	152.4 (L) x 101.6 (W) x 41 (H) mm, Tolerance +/- 0.4mm.					
Connector \& Pin Assignment	Location	$\begin{array}{\|l} \hline \text { Pin } \\ \text { (Note 1) } \\ \hline \end{array}$		Assignment	Proposed Housing	Proposed Terminals a. MOLEX: 5194 or 5225 2478, 2578,5167 or 5168 or equivalent b. JST: SVH-21T-P1.1 or equivalent
	CN1 (Input)	MX 5	JT 1	FG	a. MOLEX: 09-50-1051 (5195-05) or 09-52-4054 (5239-05) or equivalent b. JST: VHR-5N or equivalent (Note 2)	a. MOLEX: 5194 or 5225 2478, 2578,5167 or 5168 or equivalent b. JST: SVH-21T-P1.1 or equivalent
		MX 4	JT 2	N/A		
		MX 3	JT 3	$A C$ in (N)		
		MX 2	JT 4	N/A		
		MX 1	JT 5	AC in (L)		
	CN2 (Output)	MX 8	JT 1	0 V	a. MOLEX: 09-50-1081 (5195-08) or 09-52-4084 (5239-08) or equivalent b. JST: VHR-8N or equivalent (Note 2)	a. MOLEX: 5194 or 5225 2478, 2578,5167 or 5168 or equivalent b. JST: SVH-21T-P1.1 or equivalent
		MX 7	JT 2	0 V		
		MX 6	JT 3	0 V		
		MX 5	JT 4	0 V		
		MX 4	JT 5	+ V		
		MX 3	JT 6	+V		
		MX 2	JT 7	+V		
		MX 1	JT 8	+ V		
	CN3	MX 1	JT 2	Remote sense $+$	a. MOLEX: 22-01-1022 (5051-02) or 51191-0200 or equivalent b. JST: XHP-2 or equivalent (Note 2)	a. MOLEX: 2759 or 5159 50802 or equivalent b. JST: SXH-001T-P0.6N, SXH-001T-P0.6 or SXH-002T-P0. 6 or equivalent
		MX 2	JT 1	Remote sense		
	CN4 (Fan)	MX 1	JT 2	+ V	a. MOLEX: 22-01-1022 (5051-02) or 51191-0200 or equivalent b. JST: XHP-2 or equivalent (Note 2)	a. MOLEX: 2759 or 5159 50802 or equivalent b. JST: SXH-001T-P0.6N, SXH-001T-P0. 6 or SXH-002T-P0. 6 or equivalent
		MX 2	JT 1	0 V		
	CN5	MX 1	JT 2	PG / PF	a. MOLEX: 22-01-1022 (5051-02) or 51191-0200 or equivalent b. JST: XHP-2 or equivalent (Note 2)	a. MOLEX: 2759 or 5159 50802 or equivalent b. JST: SXH-001T-P0.6N, SXH-001T-P0.6 or SXH-002T-P0.6 or equivalent
		MX 2	JT 1	Return		

Note

1.Please see the mechanical drawing for pin assignment
2.Exist with model no. suffixed -J, please see the comparison in Model no. coding.

Thermal Considerations

In order to ensure safe operation of the PSU in the end-use equipment, the temperature of the components listed in the table below must not be exceeded.
Temperature should be monitored using J type thermocouples placed on the hottest part of the component (out of any direct air flow). See Mechanical Details for component locations.

Temperature Measurements at max. amb.	
Component	Max Temperature
T2	$110^{\circ} \mathrm{C}$
Q9	$120^{\circ} \mathrm{C}$
D16, D17, D17A	$120^{\circ} \mathrm{C}$
C14, C16	$105^{\circ} \mathrm{C}$
C24, C30	$105^{\circ} \mathrm{C}$

